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ABSTRACT
The paper deals with four robust partial correlation coefficients. Two methods for
testing the hypothesis of a zero correlation are studied via simulations. One of these
methods deals with contamination bias, which refers to the fact that many robust
regression estimators that have a high breakdown can be negatively impacted by few
bad leverage points. The methods considered are illustrated using data that deals
with playfulness and empathy.
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1. Introduction

A well established result is that Pearson’s correlation, ρ, is not robust [1-2]. Roughly,
this means that a very small change in a distribution can alter its value substantially.
If, for example, ρ = .8, a slight change in the tails of the distributions can lower ρ to
a value close to zero. The usual estimate of ρ, r, has a breakdown of only 1/n, where
the breakdown point refers to minimum proportion of points that must be altered to
make the value of |r| arbitrarily close to one or zero. Put another way, a single outlier
can mask a strong association among the bulk of the participants, and it can result in
a large value for r when in fact there is little or no association. It follows immediately
that the partial correlation is not robust as well.

Motivated by personality research studies, this paper deals with robust analogs of
the partial correlation coefficient. The approach used here is mentioned by Rao and
Sievers [3] but not explored. To describe the basic strategy, let X, Y and Z denote
three random variables and assume that

X = β11Z + β01 + ϵ1 (1)

CONTACT Rand R Wilcox. Email: rwilcox@usc.edu

Apple air
Asian Journal of Statistical Sciences

Apple air
Vol. 3, No-1, (2023), pp. 13-26

Apple air
© ARF India, Gurgaon, India 

Apple air
ARF INDIA

Apple air
Academic Open Access Publishing

Apple air
Journal homepage link: 
http://arfjournals.com/ajss



Asian Journal of Statistical Sciences Wilcoxa and Schilling-Friedemannb

and

Y = β12Z + β02 + ϵ2, (2)

where (β11, β01, β12, β01) are unknown parameters, and where ϵ1 and ϵ2 have some
unknown bivariate distribution. Momentarily assume that the slopes and intercepts
are estimated via the ordinary least squares (OLS) estimator based on a random
sample of size n. Let rij (i = 1, . . . , n; j = 1, 2) denote the corresponding residuals,
where j = 1 refers to the residuals associated with (1) and j = 2 are the residuals
associated with (2). Then the partial correlation is simply Pearson’s correlation based
on these residuals.

The strategy here is to replace the OLS estimator with some robust regression esti-
mator that has a reasonably high breakdown point and to replace Pearson’s correlation
with some robust measure of association. Let τxy.z denote the resulting population
version (the estimand) of some robust partial correlation estimator. One goal is to
explore, via simulations, the properties of four robust estimators. Included are results
when testing

H0 : τxy.z = 0. (3)

A technical concern is that the residuals are dependent, but theoretical results derived
by Randles [18] suggest that at least asymptotically, this is not a serious concern when
testing (3). Here, both small and large sample sizes are considered to gain some sense
about the practical importance of this issue.

2. Choosing a Robust Regression Estimator

First consider the issue of choosing some robust regression estimator. Many such es-
timators are available [2]several of which have a reasonably high breakdown point. In
terms of efficiency, no single estimator dominates. An additional concern is that many
robust estimators with a high breakdown point can be negatively impacted by what
are called bad leverage points, which are type of outlier [2]. That is, a few outliers
cannot result in an estimate of the slope that is arbitrarily large or small, but a small
proportion of bad leverage points can substantially alter the estimate of the slope.

To elaborate on the notion of a bad leverage point, first focus on the linear model

Y = β1X + β0 + ϵ, (4)

where ϵ has some unknown distribution and β0 and β1 are unknown parameters. As-
sume that for the bulk of the participants, (4) is the correct model. A bad leverage
point is a point that satisfies two conditions. The first is that the value of the inde-
pendent variable is an outlier. Such points are said to be leverage points. The second
condition is that the residual associated with a leverage point is an outlier, based on
the regression line given by (4).

Bad leverage points do not always result in a poor fit for the bulk of the data. But
the reality is that they can have serious negative impact. Wilcox [2] illustrates this
point when using the robust M-estimators derived by Markatou and Hettmansperger
[4], Coakley and Hettmansperger [5] and Yohai [6] This problem persists when using
the Theil [7] and Sen [8] estimator as well as the deepest regression line derived by
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Rousseeuw and Hubert [9] The least trimmed squares estimator derived by Rousseeuw
[10] relatively good at avoiding contamination bias but its asymptotic efficiency is
relatively low [11]. The MGV and OP regression estimators in [2] avoid the negative
impact of bad leverage points by eliminating all outliers. But this can result in a much
higher standard error compared to eliminating only bad leverage points. S-estimators
choose the slopes and intercept so as to minimize some robust measure of variation
based on the residuals [12]. But Hössjer [13] shows that S-estimators cannot achieve
simultaneously both a high breakdown point and high efficiency under the normal
model. Davies [14] reports results on the inherent instability of S-estimators. Finally,
the least absolute value (L1) estimator chooses the values for the slope and intercept
that minimize

∑
|ri|. This estimator can be impacted by bad leverage points as well.

In fairness, bad leverage points might have little or no impact on the MM-estimator
and and the Theil-Sen estimator. But it is well established that this is not always the
case. Consequently, it is prudent to use a method that deals with this issue. Because
in general the MM-estimator has good efficiency, the approach here is to check for
bad leverage points, remove any that are found, and use the MM-estimator on the
remaining data. The details of how this is done are summarized in the next section of
this paper.

3. Identifying Bad Leverage Points

In a major advance, Rousseeuw and van Zomeren [15] derived a method for identifying
bad leverage points. Their method is based on the least median of squares estimator
but at the time, concerns about the negative impact of bad leverage points on robust
regression estimatores were not known. Here, a slight modification of their method is
used that is aimed at dealing with this issue.

Consider the random sample (X1, Y1), . . . , (Xn, Yn). Here, the MAD-median rule is
used to determine whether (Xi, Yi) is a leverage point. The MAD-median rule is a
special case of the multivariate outlier detection method derived by Rousseeuw and
van Zomeren [15.]

Let Mx denote the usual sample median based on X1, . . . , Xn. The median absolute
deviation (MAD) statistic is the median of |X1 − Mx|, . . . , |Xn − Mx|. Then Xi is
labeled an outlier, and consequently (Xi, Yi) labeled a leverage point, if

Xi −Mx

MADN
> 2.24, (5)

where MADN=MAD/.6745, and 2.24 is the square root of the .975 quan-
tile of a chi-squared distribution with one degree of freedom. Under normality,
MADN=MAD/.6745 estimates the standard deviation. This outlier detecting method
has played a major role in a wide range of techniques [2]. Note that this outlier detec-
tion method has a breakdown point of .5.

Next, proceed as follows:

(1) Remove all leverage points, which of course means that any bad leverage points
are eliminated.

(2) Estimate the slope and intercept using the MM-estimator based on the remaining
data yielding say a1 and a0, respectively.
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(3) Based on all of the data, compute the residuals

vi = Yi − a0 − a1Xi

(i = 1, . . . , n).
(4) Declare (Xi, Yi) a bad leverage point if it is a leverage point and simultaneously

vi is an outlier based on the MAD-median rule.
(5) Refit the regression line via the MM-estimator based on all points not declared

a bad leverage point. The resulting estimates of the slope and intercept, say b1
and b0, are taken to be the final estimates of β1 and β0, respectively. This is
called the AMM-estimator, an adjusted MM-estimator.

4. Methods

This section describes two methods for making inferences about four robust partial
correlation coefficients.

Method M1
Consider (1) and (2) and let uij (i = 1, . . . , n; j = 1, 2) denote the residuals based on

the AMM-estimator, where again j = 1 refers to the residuals associated with (1) and
j = 2 are the residuals associated with (2). Here, four robust measures of association
are considered based on these residuals: A Winsorized correlation, Spearman’s rho,
Kendall’s tau and a skipped correlation.

The Winsorized correlation begins by Winsorizing the marginal distributions. Here,
20% Winsorizing is used, which has been the focus of past studies [2]. Let g = 0.2n
rounded down to the nearest integer and let u(1)j ≤ u(2)j ≤ · · · ≤ u(n)j denote the
residuals written in ascending order. Let

Wij =


u(g+1),j , if uij ≤ u(g+1),j

uij , if u(g+1,j) < uij < u(n−g),j

u(n−g),j , if uij ≥ u(n−g),j .
(6)

The Winsorized correlation, rw, is simply Pearson’s correlation based on the Win-
sorized values. Let ρw denote the population version of rw. Then the hypothesis

H0 : ρw = 0 (7)

is rejected at the α level if |Tw| > t1−α/2, where t1−α/2 is the 1 − α/2 quantile of
Student’s t distribution with ν = h− 2 degrees of freedom, h = n− 2g and

Tw = rw

√
n− 2

1− r2w
. (8)

Both Kendall’s Tau and Spearman’s rho are covered in a basic statistics course, so
for brevity the details are not reviewed here.

The Winsorized correlation, Spearman’s rho and Kendall’s tau guard against the
deleterious impact of outliers among the marginal distributions, but they do not take
into account the overall structure of the data cloud. That is, a point can be unusual
relative to the cloud of points, but not an outlier based in the marginal distributions.
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As a simple illustration, it is not unusual to be young, it is not unusual for someone
to have heart disease, but it is unusual to be both young and have heart disease. A
skipped correlation is aimed at dealing with this issue.

The basic idea is to use an outlier detection method that takes into account the
overall structure of the data cloud, remove any outliers that are found and compute
Pearson’s correlation based on the remaining data. There are several such methods,
none of which dominate. Donoho and Gasko [16] argued that a point is an outlier
if it is an outlier based on any projection of the data. A version of this approach is
used here. The somewhat involved computational details are described in [2]. Only an
outline of the method is described here.

The method begins by computing a robust measure of location. Here, the marginal
medians are used. Next, project all of the data onto the line connecting the center of
the cloud to the first point. If the projection of a point is an outlier among the pro-
jected data, it is declared an outlier. This process is repeated for all n points. That is,
n projections are used to determine whether a point is an outlier. The skipped corre-
lation, rp, is simply Pearson’s correlation after any outliers are removed. This measure
of association corresponds to the OP estimator [2]. The important point here is that
this measure of association is easily applied via the R function scor in the R package
WRS, which can be installed at https://github.com/nicebread/WRS. Alternatively,
source the file Rallfun-v41, which can be downloaded from https://osf.io/xhe8u/.

Let

Tp = rp

√
n− 2

1− r2p
. (9)

The hypothesis H0 : ρp = 0 is rejected at the α = 0.05 level if |Tp| ≥ c, where

c =
6.947

n
+ 2.3197.

A percentile bootstrap method can be used for any α, which has the advantage of
yielding both a confidence interval and a p-value at the expense of higher execution
time. But the focus here is on Tp.

Method M2
Simulations reported in the next section indicated that method M1 performs very

well, in terms of controlling the Type I error probability, when dealing with non-
normal distributions. But a closer look revealed that there are situations where the
Winsorized correlation, Spearman’s rho and Kendall’s tau perform poorly when there
are bad leverage points among (X1, Y1), . . . , (Xn, Yn). For this reason, a modification
of M1 was considered. It consists of simply removing any bad leverage points among
(X1, Y1), . . . , (Xn, Yn). That is, rather than use all n residual as done by M1, use only
the residuals based on the MM-estimator after bad leverage points are removed.

5. Simulation Results

A series of simulations was used to get some understanding of the methods considered
here. First, attention is focused on testing the hypothesis of a zero correlation at
the α = 0.05 level using method M1. Data were generated based on (1) and (2)
when all of the parameters are zero and the error terms have a bivariate g-and-h
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distribution, which contains a bivariate normal distribution as a special case. The
correlation between X and Z was taken to ρxz = 0 and 0.5 when ρyz = 0. Data
from a g-and-h distribution are generated by first generating from a standard normal
distribution, V , and then transforming to

U =

{
exp(gV )−1

g exp(hV 2/2), if g > 0

V exp(hV 2/2), if g = 0,

where g and h are parameters that determine the first four moments. The standard
normal corresponds to g = h = 0. Increasing g increases skewness and increasing h
increases kurtosis. Based on a survey of papers dealing with the extent distributions
are non-normal [2], four distributions are considered here: (g, h)= (0, 0), (0, 0.2),
(1, 0) and (1, 0.2). These distributions are symmetric and light-tailed, symmetric
and heavy-tailed, skewed and light-tailed, and skewed and heavy-tailed, respectively.
Figure 1 shows a plot of these four distributions. The sample size was taken to be
n = 20 and 500. A large sample size was included as a partial check on the extent
results in Randles [17] apply to the situation at hand.
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Figure 1. The four distributions used in the simulations. Upper left is (g, h)= (0, 0), upper right is (g, h)=

(0, 0.2), lower left is (g, h)= (1, 0) and lower right is (g, h)= (1, 0.2)

Table 1 shows the results, based on 4000 replications, when X, Y and Z are inde-
pendent and α = 0.05. Bradley [18] suggested that as a general guide, when testing
at the α level, a method is satisfactory if the actual level is between 0.5α and 1.5α.
Presumably there are situations where this view is inappropriate, but for illustrative
purposes, this view is adopted here. In particular, a method is viewed as satisfactory
if the actual level is between 0.025 and 0.075 when testing at the 0.05 level. As can
be seen, the estimates for all four methods satisfy Bradley’s criterion. The results for
n = 500 provide support for the theoretical results derived by Randles [17]. The sim-
ulations were repeated where Pearson’s correlation for X and Z is 0.5. This altered
the results by a few units in the third decimal place, so they are not reported.

An issue is how the four versions of M1 compare in terms of power. This depends on
the nature of the association simply because the measures of association used here are
sensitive to different features of the data. Nevertheless, some results are informative.

First consider the situation where slopes and intercepts in (1) and (2) are zero
and Y = βX + ϵ. Table 2 shows the estimates. The pattern is clear for the four
distributions. Spearman’s rho and Kendall’s tau have the highest power, followed by
the Winsorized correlation and then the skip correlation. For normal distributions,
there is little separating the Winsorized and skipped correlations. But otherwise, there
are situations where the power of the skipped correlation is substantially less than the
power of the other methods, even with n = 200.
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Table 1. Estimated probability of a Type I error, α = .05 using method M1

n g h WIN SPEAR KEN SCOR
20 0 0 .048 .058 .056 .046
20 0 .2 .046 .055 .051 .049
20 1 0 .045 .056 .054 .053
20 1 .2 .041 .057 .058 .046
500 0 0 .048 .051 .051 .037
500 0 .2 .051 .048 .048 .044
500 1 0 .049 .050 .050 .039
500 1 .2 .045 .049 .048 .042

Table 2. Estimated power using method M1

n g h WIN SPEAR KEN SCOR
β = .5

20 0 0 .375 .451 .458 .353
20 0 .2 .389 .455 .451 .337
20 1 0 .437 .510 .496 .307
20 1 .2 .446 .524 .500 .316

β = .3
100 0 .0 .708 .781 .785 .684
100 0 .2 .819 .863 .860 .684
100 1 0 .879 .956 .944 .587
100 1 .2 .918 .967 .960 .625

β = .2
200 0 0 .677 .763 .760 .667
200 0 .2 .800 .848 .844 .650
200 1 0 .907 .981 .971 .588
200 1 .2 .947 .985 .980 .604
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Table 3. Estimated probability of a Type I error when using M1 and there are two bad leverage points among

data generated from a normal distribution

n WIN SPEAR KEN SCOR
20 .087 .188 .170 .050
30 .070 .150 .135 .049
40 .070 .143 .127 .049
50 .069 .119 .110 .051
75 .068 .108 .100 .050
100 .059 .088 .078 .048
150 .051 .065 .065 .044

Table 4. Estimated probability of a Type I error when using M2 and there are two bad leverage points among
data generated from a normal distribution

n WIN SPEAR KEN SCOR
20 .087 .089 .110 .055
30 .060 .069 .082 .049
40 .059 .062 .073 .058
50 .059 .058 .066 .050
75 .058 .059 .059 .048
100 .054 .063 .063 .050
150 .055 .057 .057 .045

The failure rate of some hypothesis testing method is the minimum proportion
of points needed to render control over the Type I error probability unsatisfactory.
Consider the situation where X, Y and Z are independent. The next set of simulations
are based on standard normal distributions with two bad leverage points. The issue is
to what extent the failure rate is impacted by contamination bias. This was investigated
by resetting (X1, Y1) = (4, 4) and (X2, Y2) = (5, 5).

Table 3 shows the estimated Type I error probability when using method M1. The
method based on the skipped correlation performs well for all of the sample sizes
considered. The Winsorized correlation is unsatisfactory for n = 20 based on Bradley’s
criterion but performs reasonably well for n ≥ 30. Kendall’s tau and Spearman’s rho
are unsatisfactory for n ≤ 100 but they are satisfactory for n = 150.

Table 4 shows the results for the same situations in Table 3, only method M2 is
used. M2 improves on M1 but when n = 20, only the skipped correlation performs
reasonably well. For n = 30, the method based on Kendall’s tau remains unsatisfactory
but the other three methods perform well. For n ≥ 40, all four methods are reasonably
satisfactory.

Table 5 shows some results for both methods M1 and M2 when dealing with three
bad leverage points: (X1, Y1) = (3, 3), (X2, Y2) = (4, 4) and (X3, Y3) = (5, 5). First
focus on M1. For n = 30, all four versions of method M1 are unsatisfactory. For
n = 40, now the skipped correlation performs well, but the other three do not. Using
M1, Kendall’s tau and Spearman’s rho are unsatisfactory even for n = 200. That
is, the failure rate is less than 1.5 percent. The Type I error rate of the Winsorized
correlation is unsatisfactory for n = 75 indicating that its failure rate is less than
or equal 4 percent. The estimated Type I error probability, when n = 100, is .074
suggesting that it is satisfactory for n ≥ 100. Increasing the number of replications to
10,000, again with n = 100, the estimated probability of a Type I error is .0733. The
failure rate of the skipped correlation, for these 10,000 replications, is 10 percent.

Method M2 improves matters. Now the Winsorized correlation performed reason-
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Table 5. Estimated probability of a Type I error, using methods M1 or M2, when there are three contami-

nation points among data generated from a normal distribution

n Method WIN SPEAR KEN SCOR
30 M1 .144 .287 .284 .083

M2 .092 .112 .127 .068
40 M1 .115 .236 .217 .059

M2 .076 .078 .092 .053
50 M1 .105 .202 .199 .055

M2 .070 .081 .088 .061
75 M1 .080 .148 .143 .047

M2 .051 .054 .060 .044
100 M1 .074 .130 .125 .047

M2 .060 .060 .066 .051

Table 6. Estimated power using method M2, no bad leverage points

n g h WIN SPEAR KEN SCOR
β = 0.5

20 0 0 .372 .523 .523 .341
20 0 .2 .406 .490 .490 .326
20 1 0 .370 .348 .347 .278
20 1 .2 .347 .294 .294 .271

ably well for n ≥ 40. However, n ≥ 75 is needed when using Spearman’s rho or
Kendall’s tau. Now the skipped correlation performs well for all of the sample sizes
considered.

Boxplots of the partial correlations stemming from the situation in Table 5, based
on M1 and n = 100, are shown in Figure 2. Note that the Winsorized, Spearman
and Kendall measures are generally greater than zero, which explains why they are
unsatisfactory in terms of controlling the Type I error probability. The median of the
skipped correlation is very close to zero, but it clearly has a larger standard error
compared to the other three methods.

If instead three bad leverage points occur for (1), again the Type I error probability,
based on M1, can be inflated, but not as much as indicated in Table 5. Consider, for
example, (X1, Z1) = (3, 3), (X2, Z2) = (4, 4) and (X3, Z3) = (5, 5). For n = 30 the
estimates are 0.062, 0.093, 0.091 and 0.045, respectively. As for M2, the estimates are
0.077, 0.076, 0.076 and 0.045.

Another issue is how method M2 compares to M1, in terms of power, when there are
no bad leverage points. Table 6 shows some results for M2 when n = 20 and β = 0.5.
Comparing these results to those in Table 2, generally, the power of M2 is similar to
the power of M1, but the results for g = 1 and h = 0 are a notable exception. Now
the power of M2 is substantially lower than the power of M1. A similar result was
obtained with n = 100.

An issue is whether the test of independence derived by Hoeffding [19] is better at
dealing with the contamination bias illustrated in Table 3. That is, does Hoeffding’s
method provide better control over the Type I error probability compared to the four
measures of association considered here. Simulations indicate that the answer is no.
For example, with n = 50, the estimated Type I error probability was 0.169. This is
a bit better than Spearman or Kendall, but not by much. A method based on the
percentage bend correlation [2] yields results similar to the Winsorized correlation. A
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Figure 2. Boxplots of the partial correlations when there is bias contamination, n = 100. Left to right:

Winsorized, Spearman, Kendall and skipped correlations

test of independence stemming from Stute et al. [20] failed as well.
The Rao and Sievers [3] method, which is based on the ranks of the residuals, worked

reasonably well with n = 20 and no bad leverage points. But even with a single bad
leverage point it performed poorly and generally performed much worse than the other
techniques considered in Tables 3 and 4. Rao and Sievers [3] considered a single outlier
among the dependent variable, but they did not consider situations where there are
bad leverage points.

Some simulations were run using method M2 when Z has a p-variate distribution,
p > 1. Table 7 shows the results for p = 6 and n = 40. For heavy-tailed distributions,
the Winsorized correlation is unsatisfactory based on Bradley’s criterion. Generally,
the skipped correlation is best in terms of a Type I error probability close to the
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Table 7. Estimated Type I error probabilities using method M2, no bad leverage points, n = 40, p = 6

g h WIN SPEAR KEN SCOR
β = 0.5

0 0 .068 .070 .070 .062
0 .2 .069 .055 .055 .046
1 0 .086 .033 .033 .045
1 .2 .080 .025 .025 .049

nominal level. Increasing the sample size to n = 60, now the Winsorized correlation
performs well. For g = 1 and h = 0 the estimate is .060. The estimate for the other
three measures of association differed from 0.050 by a few units in the third decimal
place. For n = 60 and p = 8, not shown here, again all four measures of association
performed very well.

6. An Illustration

Method M2 is illustrated using unpublished data of the second author from research
examining the relation of playfulness and empathy. Playfulness describes an individ-
ual differences variable “that allows people to frame or reframe everyday situations
in a way such that they experience them as entertaining, and/or intellectually stim-
ulating, and/or personally interesting. Those on the high end of this dimension seek
and establish situations in which they can interact playfully with others (e.g., playful
teasing, shared play activities) and they are capable of using their playfulness even
under difficult situations to resolve tension (e.g., in social interactions, or in work-type
settings [20] p. 114. Empathy can be understood as a competence to understand other
people’s feelings and is expressed by spontaneous emotional and volitional cognitive
reactions to social situations [21] p. 549.

The sample comprised 254 participants, 78% women. Ages ranged between 18 to 65
with a mean equal to 27.8, and standard deviation equal 10.7. The participants com-
pleted measures of global playfulness (Short Measure of Playfulness, SMAP) [22], play-
fulness (OLIW: Other-directed, Lighthearted, Intellectual, and Whimsical playfulness,
[20] and empathy (E-Scale) [20]. Further, 50 participants also provided peer-reports of
their global playfulness and facets of playfulness. Prior research found mixed results
on the relation of age with playfulness and empathy [20,22,24]. Therefore, age may
be a relevant control variable when examining the relation between playfulness and
empathy. Most psychometric measures had a slightly negative skewness (range: -0.48
to .14, MEAN=-0.14) and were strongly platykurtic (kurtosis range: -1.12 to 0.51,
MEAN = -0.44). Age was positively skewed (skewness = 1.71) and slightly platykurtic
(kurtosis = 2.00). Based on the skipped correlation, age was negatively associated with
empathy (rp = -.15, p = .017) and positively related to only one type of playfulness,
namely the Lighthearted peer-report (rp = .38, p = .013).

Table 8 presents the estimated partial correlations using Pearson’s partial corre-
lation and M2 methods. In sum, self-reported playfulness was positively related to
empathy, except for Lighthearted playfulness (e.g., not worrying too much about fu-
ture consequences of one’s own behavior) and Whimsical playfulness (e.g., finding
amusement in grotesque and strange situations) which were negatively or not found
to be related to empathy, respectively. Neither peer-report of playfulness was found to
be related to empathy. When comparing the coefficients of the methods, Winsorized
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Table 8. Estimated partial correlation coefficients between playfulness and empathy controlling for age

PEAR WIN SPEAR KEN SCOR
Playfulness r p r p r p r p r p
Global .16 .011 .22 .001 .20 .001 .16 .011 .28 <.001
Other-directed .30 <.001 .34 <.001 .33 <.001 .34 <.001 .34 <.001
Lighthearted -.09 .152 -.17 .007 -.16 .012 -.15 .020 -.19 .020
Intellectual .16 .009 .19 .002 .20 .002 .18 .003 .22 <.001
Whimsical .08 .181 .08 .198 .09 .133 .09 .177 .17 .080
Global .26 .072 .15 .294 .17 .228 .26 .069 .13 .454
Other-directed .11 .462 .21 .148 .19 .190 .21 .146 .17 .310
Lighthearted -.13 .370 -.20 .168 -.20 .170 -.13 .362 -.20 .148
Intellectual .14 .333 -.02 .914 -.04 .761 .08 607 .18 .736
Whimsical .11 .462 .04 .799 .09 .535 .11 .459 .00 .902
Note: Significant coefficients are in bold
The last five lines refer to peer-reported data

and Spearman partial correlations were very similar. Kendall’s tau and the skipped
partial correlation were in most cases similar to the Winsorized and Spearman coef-
ficients, in other cases they were either lower or higher in absolute value than those
of the Winsorized and Spearman coefficients. In only two cases, Pearson coefficients
were similar to most of the robust coefficients, namely for Other-directed and Whim-
sical playfulness. Note that for Lighthearted playfulness, Pearson’s coefficient failed to
reject the null hypothesis, whereas the null hypothesis was rejected using any version
of method M2.

7. Concluding Remarks

In summary, all four versions of method M1 perform well in terms of Type I errors
among the distributions considered in Table 1. Table 2 suggests that the Spearman
and Kendall measures of association are best in terms of power. But as illustrated,
the methods based on the Winsorized correlation, Kendall’s tau and Spearman’s rho
run the risk of being negatively impacted by a few bad leverage points when using
M1. Even with only two bad leverage points, Kendall’s tau and Spearman’s rho are
unsatisfactory for n ≤ 100. The skipped correlation is best in terms of dealing with
contamination bias but at the expense of possibly lower power.

Method M2 deals with bad leverage points by checking for bad leverage points and
removing any that are found. With two bad leverage points, the Type I error proba-
bility is controlled fairly well for n ≥ 30, excluding Kendall’s tau. All four measures of
association performed reasonably well for n ≥ 40. For three bad leverage points, the
Winsorized correlation and Spearman’s rho require n ≥ 40, while Kendall’s measures
of association requires n ≥ 60. The skipped correlation performs reasonably well even
for n = 30.

The simulations based on M2 suggest that the skipped correlation tends to have
the lowest power. However, the four measures of association used here are sensitive to
different features of the data. Note, for example, that in Table 8, there are situations
where the skipped correlation is larger in absolute value than the other measures that
were used.
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Finally, the R function part.cor can be used to apply all of the methods con-
sidered here and is stored in the file Rallfun-v41, which can be downloaded from
https://osf.io/xhe8u/. It defaults to method M2. To use method M1, set the argu-
ment XOUT.blp = FALSE. To eliminate all leverage points, not just bad leverage
points, set the argument XOUT.blp = FALSE and the argument xout=TRUE. The
argument regfun controls which robust regression estimator is used. By default the
MM-estimator is used assuming that the R package WRS has been installed. The
argument corfun controls which measure of association is used. The default is the
Winsorized correlation. Setting this argument equal to spear, tau or scor results in
using Spearman, Kendall’s tau or the skipped correlation, respectively. The R code
used to analyze the data in the illustration is stored in the file analysis PF empathy.R
and the data are stored in the file data PF empathy.Rds.
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